
Sliver Removal by Lattice Refinement

François Labelle
Department of Electrical Engineering and Computer Sciences

University of California at Berkeley
Berkeley, California 94720

flab@cs.berkeley.edu

ABSTRACT
I present an algorithm that can provably eliminate slivers in
the interior of a tetrahedral mesh, leaving only tetrahedra
with dihedral angles between 30 and 135 degrees and radius-
edge ratios of at most 1.368, except near the boundary. In
comparison, previous bounds on dihedral angles were micro-
scopic. The final mesh can respect specified input vertices
and a user-defined sizing function. The algorithm comes
with a bound on the sizes of the features it creates, and can
provably grade from small to large tetrahedra.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
Tetrahedral mesh generation, mesh quality, sliver tetrahe-
dron, dihedral angle

1. INTRODUCTION
Decomposing a domain into simple elements like tetrahe-

dra is often the first step toward the numerical simulation
of a physical phenomenon. For this purpose, the elements
should be well-shaped for reasons of accuracy and stability
[5, 9, 20]. In most applications, tetrahedra that are close to
regular are favored, while tetrahedra that are close to de-
generate should be avoided. Many measures of tetrahedron
quality have been proposed to capture this concept quanti-
tatively. Most of these measures are equivalent in the sense
that a bound on one implies a bound on the others [12].

Supported in part by the National Science Foundation under
Awards CCR-0204377 and CCF-0430065, and in part by an
Alfred P. Sloan Research Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’06, June 5–7, 2006, Sedona, Arizona, USA.
Copyright 2006 ACM 1-59593-340-9/06/0006 ...$5.00.

(b) (c) (d)(a)

Figure 1: (a) Sliver tetrahedron: a good radius-edge
ratio does not rule out poor dihedral angles. (b)
Spear tetrahedron: a lower bound (60◦) on dihedral
angles does not rule out a very large dihedral angle.
(c) Splinter tetrahedron: an upper bound (90◦) on
dihedral angles does not rule out very small dihedral
angles. (d) Needle tetrahedron: bounds on both
small (60◦) and large (90◦) dihedral angles do not
rule out an arbitrary large radius-edge ratio.

Since a single bad element can potentially ruin a whole sim-
ulation, it is desirable to have a guarantee on the quality of
the worst element of the mesh.

For domains with no acute angles, three-dimensional De-
launay refinement [19] comes with a guarantee (upper bound)
on the ratio of a tetrahedron’s circumradius to the length
of its shortest edge, or radius-edge ratio for short. Unfor-
tunately, this guarantee does not rule out the sliver tetra-
hedron, which can have dihedral angles arbitrarily close to
0◦ and 180◦; see Figure 1(a). In this context, the problem
of obtaining well-shaped tetrahedra is reduced to eliminat-
ing slivers, and an algorithm with a guarantee on radius-
edge ratios should be complemented with a guarantee on
the smallest dihedral angle. See Figure 1(b,c,d) for exam-
ples of tetrahedra that demonstrate that bounds on dihedral
angles alone may not be sufficient to rule out some types of
degenerate tetrahedra.

1.1 Previous Work
Since 3D Delaunay refinement apparently comes so close

to providing well-shaped elements, it is natural to ask
whether slivers can be eliminated in a post-processing step.
Chew [4] eliminates slivers by inserting a vertex randomly in
a ball around the circumcenter of sliver tetrahedra. Cheng

347

et al. [3] show that if the radius-edge ratios of the tetra-
hedra are bounded, then slivers can be eliminated without
inserting any extra vertices: one can switch to a weighted
Delaunay tetrahedralization and select the weights of the
vertices in such a way that all slivers disappear. Edelsbrun-
ner et al. [7] show that smoothing can be used instead of
weights. For these last two results, the authors assumed
a periodic space to avoid having to deal with the domain
boundary. This is a reasonable simplification in order to
make progress on a very hard problem. Nevertheless, han-
dling of the boundary is important for applications, and has
been accomplished by Li and Teng [11] by improving upon
the algorithm sketched by Chew [4], and by Cheng and Dey
[2] who extended the work of Cheng et al. [3] instead. In
all cases, the actual dihedral angle bounds, while positive,
are too minuscule to be worth computing explicitly: they
are probably less than 10−6 degrees. However, experiments
by Edelsbrunner and Guoy [6] show that the algorithm of
Cheng et al. [3] can eliminate almost all slivers with dihedral
angles below 5◦ in practice.

Another option is to design an algorithm that makes use
of an underlying regular grid. Yerry and Shephard [22] pio-
neered a tetrahedral mesh generation technique based on an
octree. Field [8] proposes filling the interior of a domain with
a tetrahedral mesh constructed from a complicated icosahe-
dral assembly. Naylor [16] argues that the Delaunay tetra-
hedralization of the body-centered cubic lattice is a better
choice, both for quality and simplicity reasons. Field and
Smith [10] propose a method to obtain graded meshes based
on the body-centered cubic lattice; however their algorithm
description is informal and bounds on dihedral angles are not
provided. Molino et al. [15] also construct graded meshes us-
ing the body-centered cubic lattice and obtain good angles
in practice for domains with smooth boundaries. Mitchell
and Vavasis [14] present an octree-based algorithm to create
meshes with a very small guarantee on aspect ratios.

1.2 Summary of Results
In this paper, I present a Delaunay refinement algorithm

which also has a structured grid flavor. I show how slivers
can be eliminated by inserting new vertices carefully chosen
from a discrete set called a lattice. The minimum dihe-
dral angle guarantee of 30◦ is spectacularly good—even a
1◦ guarantee would have been significant progress.

Inserting new vertices to get rid of slivers is a powerful
tool which can be abused: a first solution is to lay down a
very fine regular grid, and to slightly perturb it to match the
input vertices. A second solution is to find a way to wrap
each input vertex individually with a small shell of lattice
vertices, and to fill the outside of the shells in some regular
way. See Figure 2. The problem with these two solutions is
that they require a lot of new vertices. The algorithm that
I propose has the second solution as its worst case, but is
likely to be much better in practice for two reasons.

1. A new vertex is inserted only in response to a bad-
quality tetrahedron. If the Delaunay tetrahedraliza-
tion of the input is already a good quality mesh, then
it won’t be changed by the algorithm. If the input
has only a few bad tetrahedra, it is likely that a few
vertex insertions will suffice to eliminate them because
good angles can also be obtained by chance, especially
if the quality requirements are relaxed to, say, a 15◦

minimum dihedral angle.

(b)(a) (c)

Figure 2: 2D equivalents of two possible strategies
to get rid of slivers by refinement. (a) The Delaunay
triangulation of the input contains a poorly shaped
element. (b) Use a distorted fine grid. (c) Create
small shells around input vertices and use a regular
mesh outside.

2. Although one can start with standard Delaunay re-
finement to bound the radius-edge ratio and then use
my algorithm to eliminate the remaining slivers, it is
a much better idea to use my algorithm to do both
at the same time. In lattice refinement, vertices with
arbitrary coordinates are the enemy; they should not
be needlessly generated.

In Section 4, I present a way to incrementally generate a
good quality mesh made out of lattice vertices only. The
generated tetrahedra can grade from small to large and are
guaranteed to have dihedral angles in the interval [30◦, 135◦]
and radius-edge ratios at most 1.119. Using this technique
as part of a Delaunay refinement algorithm guarantees good
quality tetrahedra away from the boundary (and internal
features of the domain), where the mesh is locally composed
of lattice vertices only.

In Section 5, I add the ability to handle the simplest of
internal features: input vertices with arbitrary coordinates.
This makes my result directly comparable to previous results
[4, 3]. This also slightly broadens the possible applications
to, for example, the simulation of a number of point-like
heat sources in 3D, where each source should be a vertex
of the mesh. The dihedral angle guarantee stays the same,
[30◦, 135◦], and the bound on radius-edge ratio slightly wors-
ens to 1.368. The algorithm can still grade from small to
large tetrahedra, although the constant in the grading guar-
antee is weaker.

2. SIMPLIFIED MESH GENERATION
Ideally one would like to be able to mesh any piecewise lin-

ear complex (PLC) [13] with high-quality tetrahedra, even
when the boundary is complicated. This paper doesn’t han-
dle the boundary. Provably eliminating slivers is a very hard
problem that has seen little progress, so even a partial solu-
tion is significant.

Here are a few concrete ways to interpret boundary-less
mesh generation, the first two being mathematically precise.

Periodic space [3, 7]. Run the algorithm on the periodic
space [0, 1)3, where space wraps around at the bound-
ary like in the game Asteroids. Assuming that the
space is initialized with enough vertices that inserting
a new vertex won’t create a tetrahedron that uses that

348

new vertex twice, the periodic space behaves locally
like R3 and the algorithm can run on it.

Superset mesh. Given a domain Ω ⊂ R3 with boundary,
one can ask for a good quality mesh that does not
necessarily respect the boundary but is a superset of
Ω, sometimes called a simulation envelope [18]. This
can be accomplished by considering only the quality of
tetrahedra that intersect Ω and allowing the insertion
of new vertices outside of Ω. When the algorithm ter-
minates, delete the tetrahedra that do not intersect Ω.
The result is a superset mesh of Ω with good quality
tetrahedra only.

Good quality except at the boundary. The algorithm
is used as part of an existing solution to mesh PLCs.
If the lattice refinement algorithm is about to insert a
vertex that is too close to the boundary or even outside
the domain, abort the insertion and do what the PLC
algorithm would do instead.

In this paper the results and proofs are written with the
notation of the superset mesh problem.

2.1 Definitions

Definition 1 (Sizing Function). The sizing function
is a scalar field s : Ω → (0,∞] used to prescribe the approx-
imate size of the mesh at each point of the domain.

I will use the sizing function as follows: the final mesh
should be such that a closed ball of radius s(p) centered at
p is non-empty, for all p ∈ Ω. In the case of a Delaunay
mesh, this directly implies an upper bound of s(p) for the
circumradius of a tetrahedron, where p is the circumcenter.

Since the simplified setting does not allow input edges
or faces, I use a definition of local feature size adapted to
the case of an input vertex set with a sizing function. (See
Ruppert [17] for the original definition.)

Definition 2 (Local Feature Size). Let p be any
point in R3. The local feature size due to input vertices,
lfsi(p), is the distance between p and its second-closest input
vertex. The local feature size due to the sizing function is
lfss(p) = inf{cs(a) + dist(p, a) : a ∈ Ω}, where c is some
positive constant that will depend on the algorithm. The
combined local feature size is lfs(p) = min(lfsi(p), lfss(p)).

By considering the case a = p in the definition of lfss(p)
we see that lfss(p) ≤ cs(p) for p ∈ Ω.

Lemma 1. For any two points p and q,
(a) lfsi(q) ≤ lfsi(p) + dist(p, q),
(b) lfss(q) ≤ lfss(p) + dist(p, q),
(c) lfs(q) ≤ lfs(p) + dist(p, q);
i.e. the functions are 1-Lipschitz.

Proof. The proof is adapted from Ruppert [17].
(a) By the definition of lfsi(p), there are two input vertices

v and w at distance at most lfsi(p) from p. By the triangle
inequality, v and w are at distance at most lfsi(p)+dist(p, q)
from q. Therefore lfsi(q) ≤ lfsi(p) + dist(p, q).

(b)

lfss(q) = inf{cs(a) + dist(q, a) : a ∈ Ω}
≤ inf{cs(a) + dist(q, p) + dist(p, a) : a ∈ Ω}
= inf{cs(a) + dist(p, a) : a ∈ Ω} + dist(p, q)

= lfss(p) + dist(p, q).

(c) Follows by taking the minimum of both sides of in-
equalities (a) and (b).

3. SOME LATTICES
For conciseness I define addition and scalar multiplication

of point sets as follows: A + B = {a + b : a ∈ A and b ∈ B}
and cA = {ca : a ∈ A}.

Definition 3 (Simple Cubic Lattice). The simple
cubic lattice SC0 and its scaling SCk by powers of two are
defined as

SC0 = Z3,
SCk = 2kSC0 for k ∈ Z.

Definition 4 (Body-Centered Cubic Lattice).

The body-centered cubic lattice BCC0 and its scaling BCCk

by powers of two are defined as

BCC0 = {(0, 0, 0), (1
2
, 1

2
, 1

2
)} + Z3,

BCCk = 2kBCC0 for k ∈ Z.

The following lattice is included for comparison only. It
is known to describe a sphere packing of maximum density,
but is not used in this paper.

Definition 5 (Face-Centered Cubic Lattice).

The face-centered cubic lattice FCC0 and its scaling FCCk

by powers of two are defined as

FCC0 = {(0, 0, 0), (1
2
, 1

2
, 0), (1

2
, 0, 1

2
), (0, 1

2
, 1

2
)} + Z3,

FCCk = 2kFCC0 for k ∈ Z.

The sets above are called point lattices because they are
discrete subgroups of Euclidean space under vector addition
of point coordinates. Other regular point patterns, such
as the centers of spheres in a hexagonal close packing, do
not share this property. None of my results depend on this
subgroup property, so non-lattice point sets can be used in
future work if the lattices that I have chosen turn out to
have limitations.

Proposition 2 (Nesting of Lattices).

BCCk+1 ⊂ SCk ⊂ BCCk for k ∈ Z.

A lattice L1 is said to be finer than a lattice L2 if L1 ⊃ L2.
L1 is said to be coarser than L2 if L1 ⊂ L2.

Given any full-rank lattice L ⊂ R3, let e(L) be the mini-
mum distance between two distinct points in L. Let r(L) be
the radius of the largest possible empty open ball in R3\L.

Lemma 3. Any ball of radius r(L) contains at least one
point of L in its interior, or at least 4 on its boundary.

Proof. Let B be an open ball of radius r(L) with no
point of L in its interior. By definition of r(L), B must be
a largest possible empty open ball. Since B is of maximum
radius, there must be at least 4 points of L on its boundary
to prevent the radius from being increased further. The
result follows.

Proposition 4.

e(SCk) = 2k, e(BCCk) = 2k
√

3/2,

r(SCk) = 2k
√

3/2, r(BCCk) = 2k
√

5/4.

349

Proof. The first two are clear. For the last two, note
that maximal open balls occur at Voronoi vertices of the
lattices. For example, (1

2
, 1

2
, 1

2
) is a Voronoi vertex of SC0

with a maximal empty ball of radius
√

3/2, and (1
2
, 1

4
, 0)

is a Voronoi vertex of BCC0 with a maximal empty ball
of radius

√
5/4. Due to the symmetry of these lattices, all

other maximal balls are of equal sizes.

The Delaunay tetrahedralization of the body-centered cu-
bic lattice gives a mesh with dihedral angles of 60◦ and
90◦, and radius-edge ratios of r(BCCk)/e(BCCk) =

√
15/6

(≈ 0.645). This is an excellent choice to fill a volume with
a uniform tetrahedral mesh [16]. Section 4 shows how lat-
tices of different sizes can be used in concert to generate
tetrahedra that can grade from small to large.

4. SIMPLE GRADED MESHING
An algorithm to generate graded meshes of guaranteed

quality that honor a sizing function s (but not input ver-
tices) can be devised easily: one can construct a balanced
octree and take its Delaunay tetrahedralization. By analyz-
ing the 26 possible types of cells in a balanced octree, we find
that the dihedral angles are in the interval [19.471◦, 135◦]
and radius-edge ratios at most 1.347. These bounds can po-
tentially be improved using tiles, as was done in 2D by Bern
et al. [1].

The technique presented in this section is simple and
generates tetrahedra with dihedral angles in the interval
[30◦, 135◦] and radius-edge ratios of at most

√
5/2 (< 1.119).

It is formulated as an incremental insertion method to make
it easy to combine with standard Delaunay refinement.

The method depends crucially on the following two lem-
mas, which assert that a tetrahedron with vertices in a lat-
tice and a small circumradius either has good dihedral an-
gles, or its circumsphere contains a lattice point (that the
algorithm can insert to eliminate the tetrahedron).

Lemma 5. Let t be a tetrahedron with vertices in SCk and
a circumradius of r(BCCk+1) or less. Then the dihedral
angles of t are all at least 30◦ and at most 135◦.

Proof. By rescaling, it suffices to show that a tetrahe-
dron with vertices in SC0, dihedral angle of less than 30◦ or
of more than 135◦, and circumradius of

√
5/2 or less doesn’t

exist. Because of the bound on circumradius, there is a fi-
nite number of possible tetrahedra to test. The verification
was carried out by a computer. Figure 3 shows tetrahedra
that achieve the extreme angles.

Lemma 6. Let t be a tetrahedron with vertices in BCCk

and a circumradius of r(SCk) or less. If t has a dihedral
angle less than arccos(

√
6/3) (≈ 35.264◦) or larger than

arccos(−√
3/3) (≈ 125.264◦), then there exists a point of

SCk inside the circumsphere of t.

Proof. By rescaling, it suffices to show that a tetra-
hedron with vertices in BCC0, dihedral angle of less than
arccos(

√
6/3) or of more than arccos(−√

3/3), and circum-
radius of

√
3/2 or less must always contain a point of SC0

inside its circumsphere. Because of the bound on circumra-
dius, there is a finite number of possible tetrahedra to test.
The verification was carried out by a computer. Figure 4
shows a tetrahedron that achieves the extreme angles.

Figure 3: Two worst case tetrahedra for Lemma 5.
Each tetrahedron has vertices in SC0 and a circum-
radius of

√
5/2 or less. They are the only such tetra-

hedra to achieve at least one of the angle bounds of
Lemma 5. The first has dihedral angles in [30◦, 120◦]
and the second has dihedral angles in [30◦, 135◦].

Figure 4: A worst case tetrahedron for Lemma 6.
It has vertices in BCC0, a circumradius of

√
3/2 or

less, and no point of SC0 inside its circumsphere. It
is the only such tetrahedron to achieve at least one
of the angle bounds of Lemma 6 (it achieves both).

4.1 Algorithm
The algorithm generates a mesh by incrementally insert-

ing lattice vertices while maintaining a Delaunay tetrahe-
dralization of these lattice vertices. When a vertex is cre-
ated it is assigned a label, either SCk or BCCk for some k,
and is tagged by a type number. The labels are needed in
the implementation, but the type numbers are not (they are
only used in the analysis). Each vertex belongs to the lat-
tice of its label, but the label is not necessarily the coarsest
lattice that contains the vertex.

The algorithm inserts vertices for one of two reasons: the
sizing function, or a bad-quality tetrahedron. In the latter
case, the inserted vertex always comes from a lattice that
is strictly coarser than the finest lattice label of the tetra-
hedron vertices. This allows a proof of good grading. The
refinement strategy is closer to Üngör’s off-centers [21] than
to the circumcenter method.

The complete algorithm appears in Figure 5. Because the
algorithm is building a superset mesh, any empty half-space
that is tangent to a vertex, an edge, or a triangle of the
tetrahedralization can be considered a degenerate circum-
sphere with missing vertices at infinity. Vertices at infinity
are considered infinitely coarse in the nesting of lattices.
Obviously, the tangent vertices can only be on the convex
hull of the tetrahedralization. If such a half-space intersects
Ω, then the corresponding fictive tetrahedron qualifies for
quality enforcement.

350

Input: A domain Ω ⊂ R3 and a sizing function s : Ω → (0,∞].

Procedure: Repeat the enforcement steps below in any order until none apply. Maintain a Delaunay tetrahedralization as
new vertices are inserted. When finished, remove all tetrahedra whose interiors do not intersect Ω.

Size enforcement: If there exists a point p ∈ Ω such that a closed ball B of radius s(p) centered at p is empty:

Let j be the largest integer such that r(SCj) ≤ s(p). By Lemma 3 there exists a point w of SCj in B. Insert w with
label SCj into the Delaunay tetrahedralization.

Quality enforcement: If the Delaunay tetrahedralization contains a tetrahedron t whose interior intersects Ω and which
has a dihedral angle smaller than 30◦ or larger than 135◦, or a radius-edge ratio larger than β =

√
5/2, do:

Among the 4 vertices of t, find the vertex v with the finest lattice label, according to the nesting of lattices.

Case 1: The label of v is SCk.

By assumption, the circumradius of t is larger than e(SCk)β = r(BCCk+1), or t has a dihedral angle that is less
than 30◦ or greater than 135◦. By Lemma 5 the circumradius of t is guaranteed to be larger than r(BCCk+1). Let
B be a closed ball of radius r(BCCk+1) tangent at v inside the circumsphere of t. By Lemma 3 there exists a point
w of BCCk+1 in B\{v}. Insert w with label BCCk+1 and type 1.

Case 2: The label of v is BCCk.

By assumption, the circumradius of t is larger than e(BCCk)β > r(SCk), or t has a dihedral angle that is less than
30◦ or greater than 135◦. If the circumradius of t is larger than r(SCk), then let B be a closed ball of radius r(SCk)
tangent at v inside the circumsphere of t. By Lemma 3 there exists a point w of SCk in B\{v}. Else by Lemma 6
there exists a point w of SCk inside the circumsphere of t. Insert w with label SCk and type 2.

Figure 5: A simple algorithm to create a superset mesh of a domain Ω with quality tetrahedra. The final
mesh respects a user-defined sizing function. The vertex types are used in the correctness proof.

As written, the algorithm starts with no vertices at all, so
it must first perform a size enforcement step. When there
is at least one vertex, the empty half-space rule can apply
and lead to quality enforcement steps.

4.2 Analysis
A mesh generation algorithm has good grading if the sizes

of the elements can vary from small to large over a short
distance. Since the work of Ruppert [17], a grading guar-
antee is usually a proof of a linear relationship between the
nearest neighbor distance of a vertex v of the final mesh and
its local feature size lfs(v).

As a first step we show that there exist positive constants
a and b such that the following holds.

lfs(v) ≤
j

2ka if v has label SCk,
2kb if v has label BCCk.

(1)

We show by induction that these bounds are maintained
by the algorithm. The constants a and b (and c of Defini-
tion 2) are derived at the end of this section. Once we have
these bounds, the following theorem shows that we obtain
good grading.

Theorem 7. If a mesh consists of only SC or BCC lattice
vertices, and if there exist positive constants a and b such
that (1) holds, then for any vertex v of the mesh, the distance
to its nearest neighbor is at least

min(1
1+a

, 1

1+2b/
√

3
)lfs(v).

Proof. (Adapted from Ruppert [17]). Let v be any ver-
tex of the mesh. Let w be its nearest neighbor.

If the label of v is as fine or finer than the label of w then:

In case v has label SCk: dist(v, w) ≥ e(SCk) = 2k. lfs(v) ≤
2ka. So dist(v, w) ≥ 1

a
lfs(v).

In case v has label BCCk: dist(v, w) ≥ e(BCCk) = 2k
√

3/2.

lfs(v) ≤ 2kb. So dist(v, w) ≥
√

3
2b

lfs(v).

In either case, dist(v, w) ≥ min(1
a
,
√

3
2b

)lfs(v).
Else (w is finer than v): We use Lemma 1 and apply the

bound above to w.

lfs(v) ≤ lfs(w) + dist(v, w)

≤ dist(v, w)/min(1
a
,
√

3
2b

) + dist(v, w)

= max(1 + a, 1 + 2b√
3
)dist(v, w).

So dist(v, w) ≥ min(1
1+a

, 1

1+2b/
√

3
)lfs(v).

We perform a separate analysis for each type of inserted
vertex w in the algorithm of Figure 5.

4.2.1 Insertion due to size
The new vertex w is of label SCj and satisfies lfs(w) ≤

cs(w) < 2cr(SCj) = 2j
√

3c. We require that
√

3c ≤ a, so
that lfs(w) ≤ 2ja and the insertion preserves (1).

4.2.2 Type 1 insertion
The new vertex w has label BCCk+1 at a distance at most

2r(BCCk+1) = 2k
√

5 from v with label SCk. So lfs(w) ≤
lfs(v)+dist(v, w) ≤ 2ka+2k

√
5. We require that a+

√
5 ≤ 2b,

so that by induction lfs(w) ≤ 2k+1b.

4.2.3 Type 2 insertion
The new vertex w has label SCk at a distance at most

2r(SCk) = 2k
√

3 from v with label BCCk. So lfs(w) ≤
lfs(v)+dist(v, w) ≤ 2kb+2k

√
3. We require that b+

√
3 ≤ a,

so that by induction lfs(w) ≤ 2ka.

351

4.2.4 Guarantee
The requirements can be satisfied by setting a = 2

√
3 +√

5, b =
√

3+
√

5, and c = a/
√

3. By applying Theorem 7 we
deduce that during the course of the algorithm, the distance
between any vertex v and its nearest neighbor is at least
lfs(v)/6.701.

Assuming there is a positive lower bound on the sizing
function s, this result gives a positive lower bound on the
distance between any pair of vertices. This in turn implies
termination of the algorithm, because Ω has finite volume.
(A slightly bigger volume must be considered in the case of
a superset mesh).

5. ADDING VERTEX CONSTRAINTS
In this section we extend lattice refinement to allow in-

put vertices with arbitrary coordinates in Ω. The algorithm
inserts lattice vertices, but never “too close” to an input ver-
tex. Each lattice point has an associated forbidden region
around it. No lattice point is ever inserted that has an input
vertex in its forbidden region.

Definition 6 (Forbidden Region). Let p ∈ R3 and
k ∈ Z. The forbidden region R(p, k) is a cube with side
2k(2 +

√
6)/2 centered at p. I.e.

R(p, k) = {q : ‖q − p‖∞ ≤ 2k(2 +
√

6)/4}.
Also define

ρ =
√

3(2 +
√

6)/4

to be the safety radius constant, which is the distance from
p to the furthest point of R(p, 0).

The lattice points that the algorithm inserts are called
refinement vertices to distinguish them from input vertices.
The algorithm maintains the invariant that if a refinement
vertex v has label SCk or BCCk+1, then R(v, k) contains no
input vertex.

Theorem 8. For any p ∈ R3 and any k ∈ Z, let S =
{p} ∪ (SCk\R(p, k)). Then every Delaunay tetrahedron in
S has dihedral angles in the interval [30◦, 127.903◦], and a
radius-edge ratio of at most 1.368.

Proof. By rescaling, it suffices to consider the case k =
0. Because the forbidden region is a cube with half-side
σ = (2 +

√
6)/4 (≈ 1.112), if the coordinate of p along some

axis falls in the set (σ, 3−σ)+Z, then two points of SC0 will
be covered by the forbidden region R(p, 0) along that axis.
If the coordinate falls in the complement [3 − σ, 1 + σ] + Z,
then three points of SC0 will be covered along that axis. The
total number of points of SC0 that are removed by the set
difference with R(p, 0) is therefore 8, 12, 18 or 27, depending
on the three coordinates of p.

By invoking translational and mirror symmetries, we can
assume that the coordinate of p along some axis is in the
interval I = (σ, 3

2
] or J = [3− σ, 2]. The possible cases for p

are then reduced to these four:

1. p ∈ I3 and S = {p} ∪ (SC0\{1, 2}3)

2. p ∈ I2 × J and S = {p} ∪ (SC0\{1, 2}2 × {1, 2, 3})
3. p ∈ I × J2 and S = {p} ∪ (SC0\{1, 2} × {1, 2, 3}2)

4. p ∈ J3 and S = {p} ∪ (SC0\{1, 2, 3}3)

...

...

... ...
p

Figure 6: A 2D equivalent of a Delaunay tetrahe-
dralization of the set S = {p} ∪ (SC0\R(p, 0)) in the
proof of Theorem 8. In this example, p lies in the
rectangular frame at the center, so the hole in SC0

created by the set difference with R(p, 0) is a 4 × 3
rectangle. By symmetry, we can assume that p lies
in the smaller sub-rectangle. Hollow circles are the
box face vertices.

The hole in SC0 created by the set difference with R(p, 0)
is a box with side either 3 or 4 in each axis direction (see
Figure 6).

In each case the lattice vertices forming the box around p
can be naturally classified as corner, edge or face vertices. I
claim that in a Delaunay tetrahedralization of S, p always
connects exactly to the convex hull of the box face vertices
only. This is because the box corner and box edge vertices
are isolated from p by Delaunay tetrahedra. The tetrahe-
dra whose circumspheres come closest to containing p occur
in case 1. An example is a tetrahedron with circumsphere
center (1

2
, 1

2
, 3

2
) and radius

√
3/2. The circumsphere goes

through the point (σ, σ, 3
2
) which is avoided by p ∈ (σ, 3

2
]3.

This is why I chose this value of σ.
The angle bounds are more difficult to prove formally than

in Lemmas 5 and 6 because the coordinates of point p can
vary continuously in a range. Nonetheless the dihedral an-
gles are smooth functions of the position of p and the ex-
trema are easily found. See Table 1 for a summary of the
bounds in each case. Figure 7 shows tetrahedra that achieve
the lower bounds.

Corollary 9. Let p ∈ R3 and k ∈ Z. Let t be a tetra-
hedron with vertices in the set S = {p} ∪ (SCk\R(p, k)).
Suppose that p is not inside the circumsphere of t. If t has
a dihedral angle smaller than 30◦ or larger than 127.903◦ ,
or a radius-edge ratio larger than 1.368, then there exists a
point q of SCk\R(p, k) inside the circumsphere of t.

Proof. By Theorem 8, t cannot be Delaunay in S. There-
fore there exists a point q in S inside the circumsphere of t.
Since we assumed that p is not inside the circumsphere of t,
q = p. So q ∈ SCk\R(p, k).

352

case box face vertices min dihedral max dihedral max radius-edge ratio achieved at p =
1 24 ≈ 31.962◦ ≈ 125.264◦(*) ≈ 1.198 (σ, σ, σ)
2 32 ≈ 30.129◦ ≈ 125.264◦(*) ≈ 1.267 (σ, σ, 3 − σ)
3 42 30◦ < 127.903◦ ≈ 1.329 (σ, 3 − σ, 3 − σ)
4 54 ≈ 34.785◦ ≈ 125.264◦(*) < 1.368 (3 − σ, 3 − σ, 3 − σ)

Table 1: Four cases in the proof of Theorem 8. In all cases the dihedral angles are in the interval [30◦, 127.903◦]
and the radius-edge ratios are less than 1.368. The bounds marked (*) are intrinsic to the simple cubic lattice
and are achieved independently of the position of p.

 p p p p

Figure 7: Tetrahedra achieving a minimum dihedral angle in each case of Theorem 8. Only two sides of
the box around the input vertex p are shown. The minimum dihedral angles and coordinates of p appear in
Table 1. (The coordinate system is different for this figure.)

5.1 Algorithm
The algorithm is an extension of the algorithm of Sec-

tion 4.1. The detailed algorithm is described in Figure 8.
At places the algorithm makes queries of the form “Is there
an input vertex in the region R(w, k)?” This kind of query
can be answered efficiently by using the Delaunay tetrahe-
dralization as a search structure.

As before, new vertices are inserted for one of two reasons:
the sizing function, or a bad-quality tetrahedron. The latter
is separated into three cases referring to specific parts of
Figure 8:

In case 1, an attempt is made to insert a new vertex from a
strictly coarser lattice, to obtain good mesh grading. The at-
tempt is aborted if the candidate for insertion is “too close”
to an input vertex.

In case 2, there is an input vertex nearby and the algo-
rithm has permission to insert a new vertex from a lattice
that is just as fine as the finest vertex of the bad-quality
tetrahedron, or even one level finer (inserting a vertex from
SCk when the finest tetrahedron vertex label is BCCk+1).
Corollary 9 allows an analysis of this case.

In case 3, there are two input vertices nearby. Corollary 9
cannot be used because it can only deal with one nearby
input vertex at a time. We have no other choice than to
refine the mesh with a lattice vertex and have the situation
slowly simplify itself.

5.2 Analysis
The analysis is structured in the same way as in Sec-

tion 4.2. We find positive constants a and b such that (1)
holds, and derive the constant c used in Definition 2.

We perform a separate analysis for each type of the in-
serted vertex w. The first three analyses are identical to
what was done in Section 4.2 (except for type 1.2 where k
is defined to be one less).

5.2.1 Insertion due to size
As in Section 4.2, we require that

√
3c ≤ a, so that

lfs(w) ≤ 2ja and the insertion preserves (1).

5.2.2 Type 1.1 insertion
As in Section 4.2 (for a Type 1 insertion), we require that

a +
√

5 ≤ 2b, so that by induction lfs(w) ≤ 2k+1b.

5.2.3 Type 1.2 insertion
The new vertex w has label SCk+1 at a distance at most

2r(SCk+1) = 2k+1
√

3 from v with label BCCk+1. So lfs(w) ≤
lfs(v) + dist(v, w) ≤ 2k+1b + 2k+1

√
3. We require that b +√

3 ≤ a, so that by induction lfs(w) ≤ 2k+1a.

5.2.4 Type 3 insertion
w has label SCj for some j. By construction, the circum-

radius of t is at most 2(r(SCj) + 2jρ).
If t has at least 2 input vertices, then lfsi(w) ≤ 2(r(SCj)+

2jρ) + r(SCj) = 2j(3
√

3/2 + 2ρ).
Else, t has at least 3 refinement vertices with labels SCk or

coarser, so the circumradius of t is at least e(SCk)/2 = 2k/2.
It is also at most 2(r(SCj)+2jρ), so 2k ≤ 2j4(r(SC0)+ρ) =
2j(2

√
3 + 4ρ).

From Table 2, the distance between v and u1 (or u2) is at
most 2k(4r(SC0)+2ρ) = 2k(2

√
3+2ρ) ≤ 2j(2

√
3+4ρ)(2

√
3+

2ρ). dist(v, w) ≤ 2j(3
√

3/2+2ρ). By the triangle inequality,
the distance between w and u1 or u2 is at most 2j((2

√
3 +

4ρ)(2
√

3 + 2ρ) + 3
√

3/2 + 2ρ). Let

α = (2
√

3 + 4ρ)(2
√

3 + 2ρ) + 3
√

3/2 + 2ρ.

Then lfsi(w) ≤ 2jα. We require that α ≤ a so that lfs(w) ≤
2ja.

353

Input: A domain Ω ⊂ R3 and a finite number of input vertices with arbitrary coordinates in Ω. If desired, a sizing function
s : Ω → (0,∞].

Procedure: Compute a Delaunay tetrahedralization of the input vertices. Repeat the enforcement steps below in any order
until none apply. Maintain a Delaunay tetrahedralization as new vertices are inserted. When finished, remove all
tetrahedra whose interiors do not intersect Ω.

Size enforcement: If there exists a point p ∈ Ω such that a closed ball B of radius s(p) centered at p is empty:

Let j be the largest integer such that r(SCj) ≤ s(p). By Lemma 3 there exists a point w of SCj in B. Insert w with
label SCj into the Delaunay tetrahedralization.

Quality enforcement: If the Delaunay tetrahedralization contains a tetrahedron t whose interior intersects Ω and which
has a dihedral angle smaller than 30◦ or larger than 135◦, or a radius-edge ratio larger than β = 1.368, then apply Case
1 if t has at least 1 refinement vertex, or Case 3 if t has at least 2 input vertices. (If both cases apply, then choose
either.)

Case 1: t has at least 1 refinement vertex.

Let v be the refinement vertex of t with the finest label, according to the nesting of lattices.

1.1 If the label of v is SCk for some k.

1.1.1 If the circumradius of t is larger than r(BCCk+1), then let B be a closed ball of radius r(BCCk+1)
tangent at v inside the circumsphere of t. By Lemma 3 there exists a point w of BCCk+1 in B\{v}. w is a
candidate for insertion.

1.1.2 Else if t has at least one input vertex u1, then go to Case 2.

1.1.3 Else (t has 4 refinement vertices). The radius-edge ratio of t is at most r(BCCk+1)/e(SCk) =
√

5/2 < β,
so t must have a dihedral angle smaller than 30◦ or larger than 135◦. This is impossible by Lemma 5, so
this subcase never happens.

If the forbidden region R(w, k) of the candidate w doesn’t contain any input vertex, then insert w with label
BCCk+1 and type 1.1. Else, let u1 be an input vertex in the forbidden region and go to Case 2.

1.2 Else (the label of v is BCCk+1 for some k).

1.2.1 If the circumradius of t is larger than r(SCk+1), then let B be a closed ball of radius r(SCk+1) tangent
at v inside the circumsphere of t. By Lemma 3 there exists a point w of SCk+1 in B\{v}. w is a candidate
for insertion.

1.2.2 Else if t has at least one input vertex u1, then go to Case 2.

1.2.3 Else (t has 4 refinement vertices). The radius-edge ratio of t is at most r(SCk+1)/e(BCCk+1) = 1 < β,
so t must have a dihedral angle smaller than 30◦ or larger than 135◦. By Lemma 6 there exists a point w
of SCk+1 inside the circumsphere of t. w is a candidate for insertion.

If the forbidden region R(w,k + 1) of the candidate w doesn’t contain any input vertex, then insert w with
label SCk+1 and type 1.2. Else, let u1 be an input point in the forbidden region and go to Case 2.

Case 2: t has at least 1 refinement vertex. v is the finest refinement vertex of t, and has label SCk or BCCk+1. u1 is
an input vertex “not too far” from v.

2.1 If the circumradius of t is larger than r(SCk) + 2kρ/2, then let B be a closed ball of radius r(SCk) + 2kρ/2
tangent at v inside the circumsphere of t. Let B′ be a closed ball of radius r(SCk) lying in B as far as possible
from u1. By Lemma 3 there exists a point w of SCk in B′\{v}. By construction the forbidden region R(w, k)
doesn’t contain u1. w is a candidate for insertion.

2.2 Else if t has no input vertex except possibly u1, by Corollary 9 there exists a point w of SCk inside the
circumsphere of t such that its forbidden region R(w, k) doesn’t contain u1. w is a candidate for insertion.

2.3 Else (t has an input vertex u2 = u1) go to Case 3.

If the forbidden region of R(w,k) doesn’t contain any input vertex, then insert w with label SCk and type 2.
Else let u2 be an input vertex in the forbidden region. Go to Case 3.

Case 3: There are at least 2 input vertices u1 and u2 that are vertices of t, or that are “not too far” from the
circumsphere of t.

Let j be the largest integer such that r(SCj) + 2jρ is less than the circumradius of t. By Lemma 3 there exists a
point w of SCj in a closed ball of radius r(SCj) centered at the circumcenter of t. Insert w with label SCj and
type 3. By construction no input point is in the forbidden region R(w, j).

Figure 8: An algorithm to create a superset mesh of a domain Ω with quality tetrahedra. The final mesh
respects specified input vertices and, if desired, a user-defined sizing function.

354

subcase bound if the insertion succeeds bound if the algorithm jumps to next case

1.1.1 dist(v, w) ≤ 2r(BCCk+1) dist(v, u1) ≤ 2r(BCCk+1) + 2kρ
1.1.2 n/a dist(v, u1) ≤ 2r(BCCk+1)

1.2.1 dist(v, w) ≤ 2r(SCk+1) dist(v, u1) ≤ 2r(SCk+1) + 2k+1ρ
1.2.2 n/a dist(v, u1) ≤ 2r(SCk+1)
1.2.3 dist(v, w) < 2r(SCk+1) dist(v, u1) < 2r(SCk+1) + 2k+1ρ

2.1 dist(v, w) ≤ 2r(SCk) + 2kρ dist(v, u2) ≤ 2r(SCk) + 2k · 2ρ
2.2 dist(v, w) < 2r(SCk) + 2kρ dist(v, u2) < 2r(SCk) + 2k · 2ρ
2.3 n/a dist(v, u2) ≤ 2r(SCk) + 2kρ

Table 2: Distance bounds in cases 1 and 2 of the algorithm of Figure 8, while trying to refine a bad-quality
tetrahedron t. v is the refinement vertex of t with the finest label, either SCk or BCCk+1, for some k. If the
insertion succeeds then w is the new vertex; otherwise the algorithm identifies a nearby input vertex u1 or
u2 and jumps to the next case.

5.2.5 Type 2 insertion
This case is the most difficult because in the neighborhood

of an input vertex, new lattice vertices are not necessarily
coarser than their neighbors, so we have to travel a bit to
find either a coarser lattice vertex or a second input vertex.

For the purpose of analysis, each new vertex w produced
by the algorithm will be assigned a parent p(w) and a nearby
input vertex n(w), depending on the type of inserted vertex
w.

Type 1.1: Let p(w) = v, n(w) = n(v).
Type 1.2: Let p(w) = null, n(w) = null.
Type 2: Let p(w) = v, n(w) = u1.
Type 3: Let p(w) = null, n(w) = null.

Lemma 10. If p(w) = null then

dist(p(w), w) ≤ 2k(
√

3 + ρ).

Proof. Since p(w) = null, w is of type 1.1 or 2. We look
at the values of dist(v, w) in Table 2. The bound is simply
the largest of these two:

Type 1.1: 2r(BCCk+1) = 2k
√

5;
Type 2: 2r(SCk) + 2kρ = 2k(

√
3 + ρ).

Lemma 11. If n(w) = null then

dist(n(w), w) ≤ 2k(
√

5 + 2
√

3 + 2ρ).

The tighter bound

dist(n(w), w) ≤ 2k(2
√

3 + 2ρ)

is valid if w is known to be of type 2.

Proof. Since n(w) = null, w is of type 1.1 or 2.
For type 2, we look at the largest possible value of

dist(v, u1) in Table 2. The two candidates are 2r(BCCk+1)+
2kρ = 2k(

√
5 + ρ) and 2r(SCk+1) + 2k+1ρ = 2k(2

√
3 + 2ρ).

The latter is the largest.
For type 1.1, we use the triangle inequality dist(n(w), w)

≤ dist(n(v), v)+dist(p(w), w) where n(v) = n(w) and p(w) =
v. v must be of type 2 because n(v) = null and w has la-
bel SCk, so dist(n(v), v) ≤ 2k(2

√
3 + 2ρ). Because w is of

type 1.1, dist(p(w), w) ≤ 2k
√

5. By combining these in-
equalities the result follows.

Now follow the chain of parents as follows: initialize w′ :=
w. While p(w′) is of type 1.1 or 2, and n(p(w′)) = n(w), do
w′ := p(w′).

Note that by construction, every vertex of the chain from
w to w′ has label SCk or BCCk+1 with the same k.

If p(w′) is of type 1.2 (with label SCk) or 3, then: using
bounds derived for these cases, lfs(p(w′)) ≤ 2k(b +

√
3) or

lfs(p(w′)) ≤ 2kα, so lfs(p(w′)) ≤ 2k max(b +
√

3, α).
dist(p(w′), w′) ≤ 2k(

√
3 + ρ) by Lemma 10.

dist(w′, n(w′)) ≤ 2k(
√

5 + 2
√

3 + 2ρ) by Lemma 11.
dist(n(w), w) ≤ 2k(2

√
3 + 2ρ) by Lemma 11.

n(w′) = n(w) because otherwise the while loop would
have stopped on the previous iteration.

By combining these inequalities we obtain dist(p(w′), w)
≤ 2k(

√
5 + 5

√
3 + 5ρ).

By Lemma 1 we have lfs(w) ≤ lfs(p(w′)) + dist(p(w′), w)
≤ 2k max(b +

√
3, α) + 2k(

√
5 + 5

√
3 + 5ρ).

We require max(b +
√

3, α) +
√

5 + 5
√

3 + 5ρ ≤ a so that
by induction lfs(w) ≤ 2ka.

Else (p(w′) is of type 1.1 or 2 and n(p(w′)) = n(w)):
dist(n(p(w′)), p(w′)) ≤ 2k(

√
5 + 2

√
3 + 2ρ) by Lemma 11.

dist(p(w′), w′) ≤ 2k(
√

3 + ρ) by Lemma 10.
dist(w′, n(w′)) ≤ 2k(

√
5 + 2

√
3 + 2ρ) by Lemma 11.

dist(n(w), w) ≤ 2k(2
√

3 + 2ρ) by Lemma 11.
n(w′) = n(w) because otherwise the while-loop would

have stopped on the previous iteration.
By combining these inequalities we obtain

dist(n(p(w′)), w) ≤ 2k(2
√

5 + 7
√

3 + 7ρ).

n(p(w′)) and n(w) are two distinct input vertices. This im-
plies lfsi(w) ≤ 2k(2

√
5 + 7

√
3 + 7ρ).

We require 2
√

5 + 7
√

3 + 7ρ ≤ a, so that lfs(w) ≤ 2ka.

5.2.6 Guarantee
The requirements can be satisfied by setting a = α+

√
5+

5
√

3+5ρ, b = (a+
√

5)/2 and c = a/
√

3. Theorem 7 does not
apply directly because of the input vertices (which have no
labels). We need to add two cases to the proof of Theorem 7:

1. If v and w are both input vertices, then we directly
have dist(v, w) ≥ lfs(v).

2. If v is a refinement vertex and w is an input vertex,
then:

In case v has label SCk: dist(v, w) ≥ 2kσ, where σ =
(2 +

√
6)/4.

In case v has label BCCk: dist(v, w) ≥ 2kσ/2.

The bound given by Theorem 7 becomes

min(1
1+a

, 1
1+2b/σ

)lfs(v).

355

By applying this, we deduce that during the course of the
algorithm the distance between any vertex v and its near-
est neighbor is at least lfs(v)/109.8. This implies that the
algorithm terminates, as argued in Section 4.2.4.

6. CONCLUSION
The use of two types of lattices is complicated but ap-

pears to be necessary to obtain a lower bound of 30◦ on
dihedral angles. For a system that would give good grading
based uniquely on one of the simple, body-centered, or face-
centered cubic lattices I could only obtain these respective
approximate lower bounds: 17.023◦, 14.312◦, and 14.197◦.

I hope that this work is just a first step toward a lattice re-
finement algorithm for domains with boundary constraints.
As a step in that direction, I showed in Section 5 how inter-
nal input vertices can be supported. I believe that planar
constraints can also be supported without too much diffi-
culty. Sharp features like segments and corners are more
challenging because when a segment is split, there is only
one degree of freedom for the position of the split point. Of
course, the dihedral angle guarantees don’t have to stay as
good as 30◦ and 135◦.

It would be interesting to perform experiments with the
algorithm of Figure 8 to see how much refinement is done in
practice compared to standard Delaunay refinement, and
when trying to eliminate slivers from an already refined
mesh.

7. ACKNOWLEDGMENTS
I would like to thank Jonathan Shewchuk for helpful dis-

cussions, comments, and suggestions.

8. REFERENCES
[1] M. Bern, D. Eppstein, and J. R. Gilbert. Provably

Good Mesh Generation. Journal of Computer and
System Sciences, 48(3):384–409, June 1994.

[2] S.-W. Cheng and T. K. Dey. Quality Meshing with
Weighted Delaunay Refinement. SIAM Journal on
Computing, 33(1):69–93, 2003.

[3] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A.
Facello, and S.-H. Teng. Sliver Exudation. Journal of
the ACM, 47(5):883–904, Sept. 2000.

[4] L. P. Chew. Guaranteed-Quality Delaunay Meshing in
3D. In Proceedings of the Thirteenth Annual
Symposium on Computational Geometry, pages
391–393, Nice, France, June 1997. Association for
Computing Machinery.

[5] P. G. Ciarlet. The Finite Element Method for Elliptic
Problems. North-Holland, Amsterdam, 1978.

[6] H. Edelsbrunner and D. Guoy. An Experimental
Study of Sliver Exudation. In Tenth International
Meshing Roundtable, pages 307–316, Newport Beach,
California, Oct. 2001. Sandia National Laboratories.

[7] H. Edelsbrunner, X.-Y. Li, G. Miller, A. Stathopoulos,
D. Talmor, S.-H. Teng, A. Ungor, and N. Walkington.
Smoothing and Cleaning Up Slivers. In Proceedings of
the 32nd Annual Symposium on the Theory of
Computing, pages 273–278, Portland, Oregon, May
2000. Association for Computing Machinery.

[8] D. A. Field. Implementing Watson’s Algorithm in
Three Dimensions. In Proceedings of the Second

Annual Symposium on Computational Geometry,
pages 246–259, Yorktown Heights, New York, June
1986. Association for Computing Machinery.

[9] D. A. Field. Qualitative Measures for Initial Meshes.
International Journal for Numerical Methods in
Engineering, 47:887–906, 2000.

[10] D. A. Field and W. D. Smith. Graded Tetrahedral
Finite Element Meshes. International Journal for
Numerical Methods in Engineering, 31:413–425, 1991.

[11] X.-Y. Li and S.-H. Teng. Generating Well-Shaped
Delaunay Meshes in 3D. In Proceedings of the Twelfth
Annual Symposium on Discrete Algorithms, pages
28–37, Washington, D.C., Jan. 2001. Association for
Computing Machinery.

[12] A. Liu and B. Joe. Relationship between Tetrahedron
Shape Measures. BIT, 34:268–287, 1994.

[13] G. L. Miller, D. Talmor, S.-H. Teng, N. Walkington,
and H. Wang. Control Volume Meshes Using Sphere
Packing: Generation, Refinement and Coarsening. In
Fifth International Meshing Roundtable, pages 47–61,
Pittsburgh, Pennsylvania, Oct. 1996.

[14] S. A. Mitchell and S. A. Vavasis. Quality Mesh
Generation in Higher Dimensions. SIAM Journal on
Computing, 29(4):1334–1370, 2000.

[15] N. Molino, R. Bridson, J. Teran, and R. Fedkiw. A
Crystalline, Red Green Strategy for Meshing Highly
Deformable Objects with Tetrahedra. In Twelfth
International Meshing Roundtable, pages 103–114,
Santa Fe, New Mexico, Sept. 2003.

[16] D. J. Naylor. Filling Space with Tetrahedra.
International Journal for Numerical Methods in
Engineering, 44:1383–1395, 1999.

[17] J. Ruppert. A Delaunay Refinement Algorithm for
Quality 2-Dimensional Mesh Generation. Journal of
Algorithms, 18(3):548–585, May 1995.

[18] C. Shen, J. F. O’Brien, and J. R. Shewchuk.
Interpolating and Approximating Implicit Surfaces
from Polygon Soup. ACM Transactions on Graphics,
23(3):896–904, Aug. 2004. Special issue on
Proceedings of ACM SIGGRAPH 2004.

[19] J. R. Shewchuk. Tetrahedral Mesh Generation by
Delaunay Refinement. In Proceedings of the
Fourteenth Annual Symposium on Computational
Geometry, pages 86–95, Minneapolis, Minnesota, June
1998. Association for Computing Machinery.

[20] J. R. Shewchuk. What Is a Good Linear Element?
Interpolation, Conditioning, and Quality Measures. In
Eleventh International Meshing Roundtable, pages
115–126, Ithaca, New York, Sept. 2002. Sandia
National Laboratories.

[21] A. Üngör. Off-Centers: A New Type of Steiner Points
for Computing Size-Optimal Guaranteed-Quality
Delaunay Triangulations. In Latin American
Theoretical Informatics, pages 152–161, Buenos Aires,
Argentina, Apr. 2004.

[22] M. A. Yerry and M. S. Shephard. Automatic
Three-Dimensional Mesh Generation by the
Modified-Octree Technique. International Journal for
Numerical Methods in Engineering, 20:1965–1990,
1984.

356

